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TWO BOUNDARY VALUE PROBLEMS FOR A STRONGLY 
ANISOTROPIC INHOMOGENEOUS ELASTIC RING* 

Iu. A. BOGAN 

The second boundary value problem (displacements are given on the 
boundary) and the improper mixed problem for a cylindrically orthotropic 
ring are studied. It is assumed that the coefficients of elasticity are 
continuously differentiable functions of the coordinates and depend on a 
small parameter in a specific manner. The form of the dependence of the 
coefficients on the small parameter is selected in such a way that in the 
case of constant coefficients it describes bonding of the ring by two 
families of very rigid fibers located along the radius vectors and con- 
centric circles, where the stiffness of the fiber families is of identical 
order. Consequently, the coefficients of elasticity are represented in 
the form of products of constants which will later be called provisionally 
the "stiffnesses" , and functions of the coordinates. It is assumed that 
the stiffnesses in the radial and circumferential directions are equal and 
exceed and shear stiffness considerably. The asymptotic form of the 
solution of the boundary value problems under consideration is constructed 
when the ratio between the shear stiffness and the stiffness in the radial 
direction is used as the small parameter. In the case of the second 
boundary value problem the limit boundary value problem is described by a 
hyperbolic system of equations and is not solvable uniquely, since one of 
the families of characteristics is parallel to the boundary. When 
constructing the asymptotic form the necessity arises to average the 
coefficients of elasticity with respect to the circumferential coordinate. 
In this respect, there is an analogy with the results obtained in /l/ 
where the boundary value problem was studied for a second-order elliptic 
equation. 

1. We take the generalized Hooke's law in the form 

.a‘, = c,ld,e, + whee, ?,a = c&,e+ oa = c&e, + 

c,,d,ee 

au i au au 
er=r. ee=f-&++, e,e=,,e+ ar r v-5 

where c 111 cm, CM are constants, dk (k = 1,2,3,4) are continuous differentiable functions of 

the coordinates, and n,u are the radial tid circumferential displacement. From the fact that 

the strain potential energy is positive it follows that cltr dt should satisfy the constraints 

c,,2d,d, - c,,2d,z > 0, c,,d, > 0, cd-4 > 0 

Let Cl1 > 0, caa : 0, Cl1 > coo. We introduce the small parameter E? = c&11-1 and the dimen- 

sionless stresses by setting 

o,=o,cll-~, oe =0&,-I, %a =z,eclI-l 

We subsequently keep the previous notation for the dimensionless stresses. Then the 

generalized Hooke's law can be written as follows: 

(I, = d,e, + beadlee, TM = ead,e,e (1.1) 

00 = bead&, + d,ee, b = cIcll~’ 

Let Q be a circular ring, Q = ((~~9); O< c< r,<a). We introduce the dimensionless coord- 

inate z = In (r/a) and we set z0 = 1x1 (c/a). We write the system of equilibrium equations when 
there are no volume forces in the form 
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(1.2) 

We pose the following boundary value problems for (1.2) Problem A8: 

u (0, 0) = Pl w u (x0, 0) = Pa (0) 

v (x0’ 0) = p4 (e), v (0, e) = pa (e) 
(1.3) 

Problem B,: the first three boundary conditions of problem A, are preserved and the 
following condition is substituted for the fourth 

(1.4) 

corresponding to the presence of a dry friction force on the boundary ofthebody, x = 0,wherep 
isthecoefficient of friction/2/.We require that the displacements and the functions 
(k = 1,2,&h) 

ph. (e) 
be continuously differentiable functions of the polar angle. 

2. We will construct the astmptotic form of the problem AZ for small E . We will seek 
the approximate solution of (1.2) in the form 

N 
~0 (z, e) = 2 EMU, cz, ej, ~0 (I, e) = 5 EEL’, (x, e) (2.1) 

n=a ?I==0 

where u,, and v,, are perodic functions of 8 . Substituting (2.1) into (1.2) we obtain a recur- 
rent coupled system of equations 

(2.2) 

$[ds (u,+~)]=Q&r,~~~) 

PO = P: = Q0 = Q1 = 0 

(Pm Qn are differential operators for the powers E' in (1.2) in the first and second equations, 
respectively). 

Let us examine (2.2) for n = 0. We require that the function +,(x,0) satisfy the first 
two boundary conditions (1.3). Integrating the second equation in (2.21, we obtain 

e e 

L’o (=, q = L!!+5$ \ ds _ ’ u. (x, S) ds + g,(x), h (x) = (dj-1 (x, e)) 
: 

ds (2. 4 s 
0 

where (m) denotes the mean of the function m(x,e) over the period, and g,,(x) is arbitr- 
ary and not determined by using the first two boundary conditions in (1.3). 

The first equation of system (2.2) acquires the form 

(2.3) 

Representing u,(x,e) in the form of the trigonometric series 

u0 (.r, e) = cILO (5, e)) + fj unl (2) cos ne + un2 (4 sin ne -1 
it can be shown that (2.3) has a unique solution for the first two boundary conditions (1.3). 
Consequently, the function u,(x,8) is defined uniquely, while vo(x,S) is defined apart from 
the arbitrary function g,,(s). Continuing the iteration procedure further, it can be shownthat 
even for n> 1 the functions v,,(x,@ are defined just to the accuracy of an arbitrary func- 
tion g, (x). 

The equation to determine the functions g,,(x) can be obtained from the second equation 
of (2.2). In fact, in order for it to have a periodic solution, it is necessary and suffic- 
ient that the mean of the right side with respect to the period should be equal to zero, and 
hence, the following equation should hold: 

g [ cd4 (5, e)) $F] - cm (x, e)) V, = 0, m.(x, e)=$$ + d, 
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But v, - qn,o (G 0) + Bn (4. where Q".~ (& 6) is a known periodic function. We hence obtain the 
following equation for the function g%(s): 

(2.4) 

The solution of (2.4) depends on two arbitrary constants g*(O) and g,(z& to determine 
which we use the boundary layer functions. 

We construct the boundary layer functions near x= 0 (they are constructed analogously 
near 2= so ). We introduce the stretching coordinate q = z/a near x=0- We expand the 
coefficients of (1.2) in a Taylor series in powers of e and we seek the approximate solution 
of the system of equations obtained in the following form: 

N-8 
d(q, 8)=e2 2 e%,,o(?j* 0), v'('1, e)= (2.5) 

-0 

(2.6) 

We obtain a recurrent coupled system of equations 

dl(OS 0) ~-da(0,8)~=fn,o(Ur,0;v~,3 

& [MO, 0) +j + +[&(O, 8) +]=g,.,(ur.o; vr,~,) 

f 0.0 = go.0 = 0, k<n 

to determine the functions u,,,~~v,,,,, , where fn,p,gn,o are known differential operators. We 
require that the functions vn, D (0.8) be periodic in @ and decrease exponentially as q-c + 3t. 
The function UO,,(%@) should satisfy the boundary condition 

vo.0 (0% 6) = P$ (6) - Qo.0 (0, @) - Bo (0) 

According to Lemma 5 in /l/, the solution of (2.6) that is bounded as n--j- cu admits 
of the estimate 

I L)~,~ h. 8) - (ps (e) - ho (0, eb go (0)) I c w*fiy cl > 0, cz > 0 

and it is necessary to require that the integral in the preceding inequality be zero for the 
decrease in ~~,~(n,f3) to be exponential. Hence 

go (0) = ols (0) - Qo.0 (0, 6)> 
By constructing the boundary layer functions near z = 20 we similarly obtain go (so) = 

<p, (0) - PO.0 (ro. 0)). Knowing go (O), go (s,), we determine g, (2) and v0 (2, fJ) from (2.4) . Perforr 
ing the iteration procedure of constructing the boundary layer functions further, we determine 

g, (0) and g,(s~) , and consequently, v,,(x,e). 
Finally, the asymptotic form of problem A, has the form 

u (2, 6) = A e”u, (x. 0) f e2 Izle” [un. o (rl, 0) f 4, 1 (q, B)] -c eN+V?W) (2, 6) 

v(x* B)=*~e”[v.(x. 9) + h, a (% 0) + 4.2. (111, B)] -I- eN+W (I, 0) 

where u,,, 1 h, 01, v,. 1 h. 0) are the boundary layer functions near I = %rll'(so- X)/E, eN+'R!$) 

(k = 1,2) are the remainder terms. 

3. Let us construct the asymptotic form of problem & for small E . Unlike problem A, 
the solution of (1.2) must be sought in the form 

N 
U"(S, 8) = 5 EnIAn@, e), V'(Z, e)=8-2~~o~"vn(3~ e, (3.1) 

%==a 

Substituting (3.1) into (1.2) we obtain the recurrent coupled system of equations 

au 
d 3*= 0, +&$$)=O, n=O. 1 (3.2) 

-dJ $ + L(u~_~, v,-e)= 0 (3.3) 

_$ id" +\ _t ,%~(zJ,,_~, ~',&=o. n-2, 3 
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(3.4) 

B E,fg xi i 1 + M (t&s, u,_z) + Ml (Un_*, u,,-4) = Of n 7 4 

where the differential operators L(u,u), Mb u), L, (u, v), MI ( U, V) are given by the formulas 

L(u,")=&$- c&11+ $(d'$) + Jg p4 g-v)] 

M(IL, u)=-$(c&u)+ &(da -&)-mu 

L,(u, u)= ~(d*u) + +Jd4 $) 

M, (u, v)= m - ;; +6~(&~)+534~) 

We will examine the question of the existence of periodic solutions of (3.2)-(3.4). It 

obviously follows from (3.2) that v,, = v,(t), v1 = u1 (t). Integrating the second equation of 
(3.3) with respect to 8 for n = 2 we obtain 

d,g+.d,uO+;[f d,(x,s) J!d.$!Ldsl -vo(x) {m(z3 s)ds+go(.N= 0 

0 cl 

It follows from the periodicity of u0 that v,, satisfies the equation 

Combining (3.5) with the first equation of (3.3) for n = 2, we obtain 

where the function go(z) is determined from the periodicity condition for Va(Z, 6) in 8. 
We multiply (3.5) by d,-l and integrate the result with respect to 8 . Then 

v,(5,B)+Zu.(11s)ds+S(v~,z)+e80(z)+gl(r)=O 
0 

where S(v,,z) is a known function. It follows from the periodicty of v, (z,e) that go(z) = 
-(uO) + G0 (u,,z), (G, (v,, z) is a known function), which yields an equation for u,(x,6) 

d a% 
‘ar? - (uo (x, 0)) -I- Go (00, x) + G, (vlr x) = 0 (3.6) 

analogous to (2.3) and allowing a unique solution for given n(o (0,0), u,(z,,~). Here v, (2, e) = 
F:(; e)+ g*(z), where Q,~(z,~) is determined from the known functions ug,v,, and is periodic 

, and g*(x) must be determined. 
To do this, we substitute v, (2, 0) = pao(x,8) + g, (z) into the second equation of (3.4) for 

n = 4 and we use the condition of periodicity of v,in 6. We hence have an equationfor g*(x) 

&[(d.)$j- Cm (5. 0)) g, + F. (4 = 0 

analogous to (2.4), and for u, an equation analogous to (3.6). 
Continuing the iteration process further, we obtain that u,,(z,e) is determined from the 

equation 

d I 2 - (U, (.t, 8)) = G,, (X) 

and v, (2, e) = qno (2, e) + g, (4, where qno are determined in terms of the functions Ug, .uk of 
the preceding iterations, where g,(x) satisfy the equation 

&[(A)$$]-(m)g,=F,(z) 
and F,(x) are also known. The boundary layer functions near z = O,ZO must be known for a 
complete determination of g,,(x). 
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The boundary layer functions are sought in the form (2.5). The procedure for construct- 
ing them is analogous to that described above with the sole difference that the functions 
~~,~(n,8) will satisfy boundary conditions of the Neumann type for n = 0 , which enables g,' (O), 
&a (&l) to be determined from the condition for the damping of the boundary layer functions 
to be exponential /3/. 

The asymptotic form of problem B, differs substantially from the asymptotic form of 
problem A, in that the series expansion in powers of e for v(z,tJ) must start with the power 
-2, and this is related, in turn, to the fact that the coefficient of friction is assumed to 
be non-zero. For p-0 the series expansion starts with the zeroth power of 8. 

The system of equations (2.2) to determine the functions u,,, z+, is hyperbolic with two 
double families of characteristics +~con~lt and f~=const, which indeed results in the appear- 
ance of the average with respect to the angular coordinate in the asymptotic form because of 
the requirement for the displacement to be unique. We note that the "radial" part of the 
functions v,, (~~6) is extracted automatically in problem E, . 
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THE PROBLEM OF THE CONTACT BETWEEN A LINEAR ELASTIC BODY 
AND ELASTIC AND RIGID BODIES (A VARIATIONAL APPROACH)* 

A.M. KBLUDNEV 

The problem of the contact between a linear elastic body and a rigid body 
is formulated as a one-sided problem. The solution is determined from the 
variational inequality,.equivalent to the problem of minimizing the energy 
functional in a set of allowable displacements. The regularity of the 
solution is established down to internal points of the oontact boundary. 
A measure is constructed in the subsets of the contact boundary that 
enables the effect of a stamp on an elastic body to be characterized. 
The absolute continuity of this measure is proved at the internal point. 
The problem of the contact of two elastic bodies is examined in a similar 
formulation. The regularity of the solution is established and the nature 
of the effect of one body on the other is clarified. 

1. Contact between an elastic and a rigid body. Formulation of the problem. 

Let an elastic body in the natural state occupy a domain QCR3 with boundary r of class C" 
represented in the form of the union of three parts: I' = I'm U I', U rc.The condition o=O is 

given on r. , where o is the displacement vector. The vector force uifsf = gl is given on r,, 
where n = (n,, n,, nr) is the external normal to the boundary, si, is the stress tensor, gi are 
given surface forces, i,j = 1,2,3, and summation here and below is over repeated subscripts. 
It is assumed that the points r, of the elastic body can interact with the rigid body for 
which the equation of the surface has the form @ (t)=U, where the inequality 0((z)< 0 is 

satisfied for points of the rigid body. In the linear approximation the condition on the 

displacement vector has the form /l/ 

(1.1) 
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